

UNIVERSITA’ DEGLI STUDI DI MILANO - BICOCCA

A Practical Approach to Services Composition
Through Light Semantic Descriptions

Cremaschi M., De Paoli F.

Cremaschi M., De Paoli F. (2018) A Practical Approach to Services Composition Through Light
Semantic Descriptions. In: Kritikos K., Plebani P., de Paoli F. (eds) Service-Oriented and Cloud
Computing. ESOCC 2018. Lecture Notes in Computer Science, vol 11116. Springer, Cham

The final publication is available via https://doi.org/10.1007/978-3-319-99819-0_10

A practical approach to services composition
through light semantic descriptions

Marco Cremaschi and Flavio De Paoli

Department of Informatics, Systems and Communication
University of Milan - Bicocca, Viale Sarca 336/14, Milan, Italy

{cremaschi,depaoli}@disco.unimib.it

Abstract. Services composition has been much investigated over the
last decade without reaching shared and consolidated results mainly for
the lack of interoperable descriptions of services and the consequent need
of extensive user intervention. In this paper, we propose a light and prac-
tical approach to create machine-readable descriptions of output data
that can be merged or used (as-is or adapted) as input data to other ser-
vices. The solution relies on the popular and standard OpenAPI descrip-
tions augmented with annotations based on JSON-LD format. Services
descriptions are created by table annotations techniques applied on sets
of given or retrieved output values. The approach has been implemented
in a tool and validated with a set of real services.

1 Introduction

In the last decade, we have witnessed the evolution of web services models from
the WSDL/SOAP to the REST. This change is tangibly visible, for example,
by searching ProgrammableWeb1, perhaps the largest repository of web descrip-
tions. One of the reasons for this evolution is the need to simplify the service
reference model to enhance comprehensibility and standardisation, and therefore
provide the bases for automatic management of descriptions and composition.
A similar evolution is needed in the realm of semantic web services. As a matter
of facts, well-defined proposals that deliver machine-readable descriptions, such
as OWL-S: Semantic Markup for Web Services [10], Semantic Annotation for
WSDL and XML Schema (SA-WSDL) [7], Micro Web Service Model Ontology
(MicroWSMO) [6] and Semantic Annotations for REST (SA-REST) [5], failed
to become widely used mainly for their complexity that requires the involvement
of experts.

Current description models address services accessible through API REST,
and provide meta-languages to describe services as documents based on property-

The work presented in this paper has been partially supported by the EU H2020
project EW-Shopp - Supporting Event and Weather-based Data Analytics and Mar-
keting along the Shopper Journey - Grant n. 732590.

1 https://www.programmableweb.com/apis/directory

value pairs. OpenAPI Specification2, also known as Swagger3, API Blueprint4

and RAML5 are the most representative. However, these models do not support
semantic annotations to make property-value pairs interoperable. In this paper,
we discuss an extension of the popular OpenAPI model to add semantic anno-
tations on input parameters and output properties of services. Such annotations
are compliant with the JSON-LD6 format to follow the REST philosophy in
order to minimise the user involvement in many practical situations.

The availability of semantic descriptions of APIs enables the development of
automatic techniques and tools to support services composition [13]. A general
definition states that a process of composition is defined as the aggregation of
different Web services into a single compound service to perform more complex
functions [14]. In this context, we refer to information services and the mash-
up of results got from independent services to deliver comprehensive answers to
users’ requests, or to prepare data coming from a set of services to invoke another
service. We call the former merge composition and the latter sequence composi-
tion. Merge composition involves more services that are invoked in parallel with
the same input data, whose answers are then composed. Sequence composition
involves a service which is invoked with input data coming from the composition
of answers from one (adaptation) or more (mash-up) services. This work roots
and extends the one presented in [3, 8] by proposing a formalised model to cre-
ate semantic descriptions for Web APIs, and a set of composition rules based
on semantic annotations inside the descriptions. Moreover, we implemented the
AutomAPIc tool to support users in the creation and composition of semantic
descriptions.

Services composition may occur at design time or at runtime. At design
time, the ability of automatic processing of descriptions enables actors (users
or machines) to discover, select and compose services. If semantic descriptions
are not available, actors can rely on techniques, such as table interpretation and
NLP techniques, to build such missing descriptions. At runtime, composition
supports adaptation and substitution of services to ensure contextualization and
accomplishment of tasks.

In the next section, we discuss services description and composition to moti-
vate the work. Then, Section 3 describes the proposed extension of the OpenAPI
model to include semantic annotations. Section 4 discusses the composition tech-
niques in the split and sequence cases. Section 5 presents the tool that provides
full support to users to manage the process of building descriptions and compos-
ing services. Section 6 validates the approach by addressing a set of real services.
Finally, Section 7 draws some conclusions.

2 https://www.openapis.org
3 http://swagger.io
4 https://apiblueprint.org
5 http://raml.org
6 https://json-ld.org

2 Services description and composition

In the last decade, the composition of services has been widely investigated
without getting to effective results for many reasons. Among others, the most
relevant are the use of different architectural styles, the unexpected evolution of
services, and the use of different description languages and different conceptual
models [12]. Moreover, composition may occur at the design stage, leading to
static compositions, or at runtime, leading to dynamic composition. The latter is
best suited to address the issues in real environments that change continuously
and requires automatic tools to search for, select and compose Web services
automatically. The main issue affecting automatic composition is the limited
number of available machine-readable descriptions associated with services.

A traditional way to compose services is the use of orchestration languages,
such as BPEL (Business Process Execution Language) [16] or OWL-S (Ontol-
ogy Web Language for Services) [10], which support the manual definition of
abstract processes that can be implemented by actual services. On the other
side, dynamic composition in automatic way can be achieved by exploiting the
semantic Web and the planning techniques. However, the realisation of a com-
pletely automatic composition process is complex and presents several issues
[14]. The main problems are the missing of semantics associated with services,
and the capability of understanding the semantics even when present.

The most popular syntactic description model is WSDL 2.0 (Web Services
Description Language) [1], which defines an XML format for describing Web
services by separating the abstract functionality offered by a service from con-
crete details such as how and where that functionality is offered. Although it
supports descriptions of both SOAP-based services, and REST/API services, it
is the de-facto standard for the former but is rarely adopted for the latter. The
Web Application Description Language (WADL) is a machine-readable XML
format that was explicitly proposed for API services. WADL was also proposed
for standardisation, but there was no follow-up.

Recently, user-friendly and easy-to-use metadata formats have been intro-
duced, along with editors to support developers in the creation of descriptions
for REST APIs. Among others, popular description formats are the Open API
Specification, which provides human-readable API descriptions based on YAML
and JSON. RAML is a YAML-based language for describing RESTful APIs. API
Blueprint is a documentation-oriented web API description language, which pro-
vides a set of semantic assumptions laid on top of the Markdown syntax. The
Hydra specification, which is currently under massive development, aims to en-
rich current web APIs with tools and techniques from the semantic web area.

Table 1 is an extension of the one presented in [15] to compare the number of
questions posed in Stack Overflow and the number of Git stars (showing appre-
ciation to a project) received by the four description models under study. The
increasing number of available descriptions highlights the growing popularity of
descriptions, and the relevance of tools that support the creation, publication,
use and maintenance of service descriptions. The common limitation of such
models is the lack of semantic descriptions, which motivated our previous paper

[3]. In order to be effective, we extended the most popular model, OpenAPI,
to support semantic-enabled tools for describing, discovering, and then compose
APIs.

Table 1. Comparison of API description models (at May 27, 2018).

Detail/Model API Blueprint RAML WADL OpenAPI Spec
Format Markdown YAML XML YAML, JSON
Licence MIT ASL2.0 Sun ASL 2.0

Version
Format 1A
revision 9

1.0.1 31 August 2009 3.0.1

Initial commit Apr 2013 Sep 2013 Nov 2006 Jul 2011
Pricing plan Yes Yes No No

StackOverflow
Questions

2015
2016
2017
2018

88
61
40
15

153
168
174
56

86
84
74
33

13
166
319
218

Github Stars
2015
2016
2017
2018

1,819
X

5,390
6566

1,058
X

2,735
3060

N/A

2,459
X

6,360
9836

Google Search 985K 1M 486K 8M

3 A light semantic Web API description model

The OpenAPI is the most promising description model since it defines a simple
format to specify descriptions supported by a broad set of vendor-neutral API
tools, whose development involves a massive community of active users. Such
tools provide significant support to almost every modern programming languages
to create and test APIs. Moreover, the OpenAPI Initiative is an open source
project sustained by relevant stakeholders, including Google, IBM, Microsoft
and PayPal. There are several repositories collecting API REST described using
OpenAPI, such as SmartAPI 7 and APIs.guru8.

An OpenAPI description is a YAML or JSON document that contains a list
of resources and a list of operations that can be applied to those resources. An
example is provided in Listing 1.1, which describes the Google Books API. Notice
that the API is described by name:value pairs of strings without any semantics.

We propose to extend such descriptions by inserting annotations (i.e., links
to ontology classes and ontology properties) through the use of the JSON-LD9

format. JSON-LD provides (i) a universal identification mechanism for JSON
objects through the use of Internationalized Resource Identifiers (IRIs); (ii) a way
to disambiguate shared keys between different JSON documents through IRIs
mapping and context; (iii) the possibility to annotate the strings with indications
on the used language; and (iv) a way to associate data types with values (e.g.,
dates, times, etc.).

7 http://smart-api.info/registry
8 http: https://apis.guru/openapi-directory/
9 https://json-ld.org/spec/latest/json-ld/#basic-concepts

Listing 1.1. OpenAPI description of the Google Books API.

1 "paths": {
2 "/volumes": {
3 "get": {
4 "parameters": [{
5 "name": "title", [...]
6 }],
7 },
8 "responses": {
9 "200": {

10 "schema": {
11 "title": "result",
12 "type": "object",
13 "properties": {
14 "isbn": { "type": "string"},
15 "author": { "type": "string" },
16 "title": { "type": "string" }, [...]

The marriage between JSON-LD and OpenAPI descriptions occurs through
the introduction of the semanticAnnotations property (e.g., Listing 1.2, line 8
and 27), which is composed of two parts: the definition of a context, by the
keyword @context (e.g., line 9 and 28), to set short names for the reference
ontologies used throughout the description; and a list of annotations for param-
eters (input values) and responses (output values). Each annotation is a pair to
annotate the name, introduced by the keyword @id (e.g., line 14 and 33), and
the value, introduced by the keyword @type (e.g., line 15 and 34). Annotations
are IRIs that uniquely identify elements.

Listing 1.2. Semantic OpenAPI description of the Google Books API.

1 "basePath": "/ books/v1",
2 "paths": {
3 "/volumes": {
4 "get": {
5 "parameters": [{
6 "name": "title", [...]
7 }],
8 "semanticAnnotations": { /** Input semantics **/
9 "@context": {{

10 "dbp": "http :// dbpedia.org/property/",
11 "xsd": "http ://www.w3.org /2001/ XMLSchema #"
12 },
13 "title": {
14 "@id": "dbp:title",
15 "@type": "xsd:string"
16 }
17 },
18 "responses": {
19 "200": {
20 "schema": {
21 "type": "object",
22 "properties": {
23 "isbn": { "type": "string" },
24 "author": { "type": "string" },
25 "title": { "type": "string" }
26 },
27 "semanticAnnotations":{ /** Output semantics **/
28 "@context": {
29 "dbp": "http :// dbpedia.org/property/",
30 "xsd": "http ://www.w3.org /2001/ XMLSchema #"
31 },
32 "isbn": {
33 "@id": "dbp:isbn",
34 "@type": "xsd:integer"
35 },
36 "author": {
37 "@id": "dbp:author",
38 "@type": "xsd:string"
39 },
40 "title": {
41 "@id": "dbp:title",
42 "@type": "xsd:string"
43 }, [...]

4 Composition types and rules

In this context, we consider the composition of information services and inter-
ested in mashing up results from independent services to deliver a comprehensive
answer to users’ requests, or to prepare data coming from a set of services to
invoke another service. We call the former merge composition and the latter se-
quence composition. Merge composition involves more services that are invoked
in parallel with the same input data, and the results are composed [11]; while
sequence composition involves a service which is invoked with input data that
are coming from one (data adaptation) or more (data mash-up) services.

Dealing with automatic sequence composition, semantic compatibility needs
to be verified. In this context, semantic compatibility occurs when a semantic
relationship holds between the semantic classes10 of output properties of an API
and input parameters of another API. In such cases, output properties can be
used as input parameters, possibly after some transformations (Figure 1).

Fig. 1. Schema of sequence composition.

To evaluate semantic compatibility, we can define four rules:

Rule 1: single ontology, same concepts. If annotations refer to the same
ontology, and name/value pairs refer to the same concept, or two concepts
in relation owl:sameAs, then the composition is straightforward since they
are compatible (see Figure 2.1).

Rule 2: different ontologies, same concepts. If annotations refer to differ-
ent ontologies (see Figure 2.2), we need to verify if the annotations of in-
volved name/value pairs are equivalent (i.e., they refer to the same on-
tology concepts or property). For example, some ontologies such as DB-
Pedia11 and Wikidata12 provide the properties owl:equivalentProperty and
owl:equivalentClass to address the issue. These properties, however, are not
supported by all ontologies, therefore some Ontology matching [4] techniques
may need to be exploited to check for compatibility.

Rule 3: single ontology, different concepts in relation to each other. If
annotations refer to the same ontology, and name/value pairs refer to dif-
ferent ontology concepts or properties, then values’ compatibility need to be
checked. If between the involved concepts relations such as subclass and sub-
property hold, then they may be compatible and the composition may occur.
An example is shown in Figure see Figure 2.3, where the annotation @type:

10 https://www.w3.org/TR/owl2-syntax/#Classes
11 https://dbpedia.org
12 https://www.wikidata.org

dbp:zipCode refers to a subproperty of dbp:postalCode. Therefore, API 1 and
API 2 are compatible.

Rule 4: different concepts not related to each other. If annotations of the
name/value pairs refer to different ontology concepts or properties in the
same ontology or different ontologies, and among these elements none of the
above rules apply, compatibility may occur after a transformation (e.g., by
invoking a third-party service). For example (see Figure 2.4), if API 1 re-
turns a mail address, and API 2 requires latitude and longitude values as
input parameters, then a third API is needed to perform the conversion.

Fig. 2. Sequence composition: examples of the four compatibility cases.

Let’s consider a use case to discuss the composition rules described above.
Assume we seek an application that helps students to retrieve information to
access textbooks. The application should provide information about different
options: bookshops or e-commerce purchase, library consultation, or free down-
load. The composition related to this use case is shown in Figure 3: we consider
a process that starts with Google Books API, which gets a title in input and
delivers a full report about accessing the requested book in output.

A first example of sequence composition type, is the service that collects in-
formation about a book from Google Books API13 and calls Amazon Market
API14 to check if it is available. The Semantic OpenAPI Description of Amazon

13 https://developers.google.com/books/
14 https://developer.amazonservices.it/gp/mws/docs.html

Fig. 3. Example of a process of composition of the use case.

Market API is in Listing 1.3. The semantic annotation in line 6 finds a corre-
spondence in the description of the Google Books API, in line 33 of Listing 1.2;
in both descriptions the concept of ISBN is described with the same semantic
annotation. Therefore, the services can be composed (rule 1).

Listing 1.3. The input part of the description of the Amazon Market API.

1 "get": {
2 "parameters": [{
3 "name": "IsbnItem", [...]
4 }],
5 "semanticAnnotations": {
6 "IsbnItem": {
7 "@id": "dbp:isbn",
8 "@type": "xsd:integer"
9 }, [...]

A second example is the sequence composition of the Google Books API, the
Library API, and the Google Transit API: first the Library API is invoked to
check the presence and availability of the book, and then the Google Transit
API is invoked to check the existence of public transport to reach the library.

The composition of Google Books API and the Library API can be performed
according to rule 1, and rule 3. The annotations on line 8 and line 16 of Listing
1.4 are compatible with the annotations in line 32 and 40 of Listing 1.2 (rule 1).
The parameter on line 12 of Listing 1.4 is compatible with the property present
in line 36 of Listing 1.2 since the relation rdfs:SubPropertyOf holds between
them (rule 3).

Listing 1.4. Extract from the description of the Library API.

1 "get": {
2 "parameters": [
3 { "name": "Isbn" },
4 { "name": "author" },
5 { "name": "title" }
6],
7 "semanticAnnotations": {
8 "Isbn": {
9 "@id": "dbp:isbn",

10 "@type": "xsd:integer"
11 },
12 "author": {
13 "@id": "dbp:writen",
14 "@type": "xsd:string"
15 },
16 "title": {
17 "@id": "dbp:title",
18 "@type": "xsd:string"
19 }, [...]

The composition between the Library API and the Google Transit API can-
not be performed directly because the first API returns the mail address of
a library in text format, while the Google Transit API gets geographic coor-
dinates as input. For this reason, between the two compositions a third API

(Google Maps geocoding API) is used to perform geocoding (rule 4). Listing 1.5
shows the annotations of the Google geocoding API.

Listing 1.5. Extract from the description of Google geocoding API.

1 "get": {
2 "parameters": [
3 { "name": "address" }
4],
5 "semanticAnnotations": {
6 "address": {
7 "@id": "dbp:address",
8 "@type": "xsd:string"
9 },

10 }
11 },
12 "responses": {
13 "200": {
14 "location": {
15 "properties": {
16 "lat": { "type": "number" },
17 "long": { "type": "number" }
18 },
19 "semanticAnnotations": {
20 "lat": {
21 "@id": "dbp:latitude",
22 "@type": "xsd:float"
23 },
24 "long": {
25 "@id": "dbp:longitude",
26 "@type": "xsd:float"
27 }, [...]

Now that all the information on the different ways to get access to the text-
book have been collected, we can compose the results to deliver the requested
report to the user.

Dealing with merge composition, we need to verify the semantic compatibility
of at least two different outputs (Figure 4).

Fig. 4. Schema of merge composition.

To evaluate semantic compatibility in the merge composition, we can define
an additional rule:

Rule 5: concepts as unique identifiers. If two or more descriptions share
compatible concepts (i.e., they are linked by properties like owl:sameAs,
owl:equivalentClass, rdfs:subClassOf, or rdfs:subPropertyOf), and these con-
cepts uniquely identify the represented resources (e.g., ISBN for a book, VAT
ID for a company, BARCODE for a products), then the outputs of the APIs
can be merged.

The Listing 1.6 is a fragment of the Archive.org API15 description; as shown
in line 10, 14, 18, respectively the annotation of the output properties, ISBN,
title, author; it is possible to observe how these properties are compatible with
the response of Google Books API (Listing 1.1). According to rule 5, the merge
composition can occur if compatible properties allow us to conclude that out-
puts refer to the same resources. In the use case, the ISBN can be adopted as
unique identifier for books, thus allowing composition of outputs into the final
comprehensive report.

Listing 1.6. Extract from the output part of the description of the Archive API.

1 "200": {
2 "Book": {
3 "type": "object",
4 "properties": {
5 "ISBN": { "type": "string" },
6 "title": { "type": "string" },
7 "author": { "type": "string" }, [...]
8 },
9 "semanticAnnotations": {

10 "ISBN": {
11 "@id": "dbp:isbn",
12 "@type": "xsd:integer"
13 },
14 "title": {
15 "@id": "dbp:title",
16 "@type": "xsd:string"
17 },
18 "author": {
19 "@id": "dbp:author",
20 "@type": "xsd:string"
21 }, [...]

5 AutomAPIc: composition of REST APIs

AutomAPIc is a comprehensive tool to manage semantic descriptions and in-
put/ouput composition of services. In this paper, we concentrate on the the
description editor, which supports semi-automatic creation of semantic descrip-
tions, and automatic composer, which supports compatibility matching. Au-
tomAPIc is available via Git repository16. The Figure 5 shows the architecture
of the tool.

It is possible to identify 6 main components: (i) Description Editor, for the
definition and management of API descriptions in OpenAPI format; (ii) De-
scription Annotator, for adding semantic annotations; (iii) Composition Editor,
which allows for the selection of a set of composable APIs by the user; (iv)
API Connector, component for automatic identification of the composable APIs
in relation to the composition rules described above; (v) Ontology Connector,
component to extract semantic relations by queries to the LOD Cloud17 with
SPARQL query; (vi) Composer API, for the execution of the composition pre-
viously defined by the user.

15 http://blog.archive.org/developers/
16 https://bitbucket.org/disco unimib/automapic-tool/
17 http://lod-cloud.net

Fig. 5. Architecture of AutomAPIc tool.

5.1 Getting OpenAPI descriptions

The description process is semi-automatically managed by augmenting exist-
ing API descriptions, which can be retrieved from existing repositories (e.g.,
ApisGuru, SmartAPI), or created manually using the Description Editor. These
descriptions are represented in JSON or YAML format, and include all relevant
information such as available HTTP operations, the list of input parameters and
output responses for each operation. The process of creating a description is de-
tailed in Algorithm 1.

Algorithm 1: Retrieve or create API description.
Result: API description

1 if description is available then
2 retrieve description from existing repositories and registries of services;
3 else
4 create it manually using the Description Editor;

5.2 Adding semantic annotation

If semantic annotations are missing, we need to annotate input and output data.
To annotate output data, AutomAPIc provides users with a service that collects
a set of output values of GET calls into a table and applie Semantic Table Inter-
pretation [17] techniques to understand such values and identify the annotations
to be added.

Table interpretation consists of associating data with semantic concepts in an
ontological structure, within the LOD Cloud, which aims to represent the knowl-
edge of a certain domain through the connections that exist between these same
elements. The GET method is mainly considered since it is the most frequent.
In this way API’s parameters and properties can be managed by a computer.
The code related to the Table Interpretation technique used in this proposal is
available through a Git repository18.

The input parameters are annotated differently because it is not possible to
transform the parameters into a table. AutomAPIc provides a service based on

18 https://bitbucket.org/disco unimib/mantistable-tool/

Natural Language Processing [2] techniques. In particular the Stanford CoreNLP
tools19 [9] has been adopted. These tools provide several libraries that allow for
the extraction of entities from API descriptions, which will then be associated
with concepts. The application of these techniques on hundred descriptions from
the repository APIs.guru led to the correct identification of entities and prop-
erties for 93% of the cases. Algorithm 2 defines the process to insert semantic
annotations in API descriptions. This algorithm revises and extends the one
presented in [3].

Algorithm 2: Create and add semantic annotation to API descriptions.
Data: API description
Result: API description with semantic annotations

1 Detect all resources’ end-point;
2 foreach end-point do

// collect data
3 repeat
4 generate input parameters following the API description;
5 generate semantic annotation of the input parameters using NLP technique;
6 insert semantic annotation of the input parameters in API description;
7 if input parameters cannot be generated then
8 take input parameters from the user

9 invoke API with input parameters;
10 collect results;

11 until at least N results are collected; /* default N=10 */
// create tables

12 foreach results do
13 create a header row with API properties;
14 fill content-cells with values from inputs and responses;

// add semantic annotations
15 foreach tables do
16 apply table interpretation technique;
17 show table to the user;
18 if table annotation is not complete then
19 show related vocabularies and/or alternatives to the user;
20 ask the user to manually add links;

21 if the user wants to review the annotations then
22 show related vocabularies to the user;
23 let the user confirm or modify the links;

24 insert semantic annotation of properties in API description;

5.3 Performing automatic composition

The presence of semantic annotations allows the automatic identification of the
composable APIs given a starting API. The API composer component automat-
ically shows the compatible APIs. The possible combinations have been previ-
ously calculated by the API connector, through the use of SPARQL queries, in
order to apply the compatibility rules (Algorithm 3).

19 https://stanfordnlp.github.io/CoreNLP/index.html

Algorithm 3: Identification of compatibility between the APIs.
Result: Composed APIs

1 inserting a new API into the system;
2 parsing of the description;
3 extraction of semantic annotations;
4 foreach APIs do
5 creation and execution of SPARQL queries to identify the relationships between the

annotations of the APIs;
6 update the graph of possible compositions;

6 Validation

To verify the validity of the proposed composition approach, we collected a set of
APIs (Table 2) for the creation of a benchmark with characteristics that cover all
possible cases. The chosen APIs comes from various domains, including public
transport, films, books, music and events.

Table 2. Validation dataset.

API Description Source
GEOCODING Converts an address into latitude and longitude Google Maps
MARINE CONDITION Forecast of marine conditions World Weather Online
WEATHER FORECAST Weather forecasts Weather Underground
PHOTOS Photos geolocated in a specific position Flickr
NEWS List of news NewsAPI
BOOK List of information about a book Google
MOVIE List of information about a film OMDb API
POI Points of interest of a city Sygic API
LIBRARY List of information about the availability of a book Opac Unimib
E-COMMERCE Information regarding the price of a product Amazon Market
FREE EBOOK Information on the presence of a free eBook Archive.org
PLAYLIST List of songs contained in a playlist Spotify
LYRICS Text of a song Musixmatch API
FLIGHTS Airport information Ryanair API
BIKE SHARING List of bicycles available City Bike
EVENTS List of events in a city EventiFul
HOTEL BOOKING List of hotels available on a specific date on a certain day HotelsCombined API
REVIEWS List of reviews of places and events TripAdvisor Content API
PUBLIC TRANSPORT List of information about public transport in a particular place Google Transit
RESTAURANTS List of restaurants in a specific city Zomato API

In a second phase the descriptions and their annotations were analyzed, to
identify the possible compositions. Through the combinatorial calculation it is
possible to calculate the maximum number of combinations. In particular, given
20 APIS, using provisions without repetitions (since an API cannot be composed
with itself), the maximum number of compositions is 380.

As shown in Figure 6, depending on parameters and annotations, the ac-
tual combinations are twenty four. AutomAPIc was able to identify the 85% of
them. Table 3 reports the confusion matrix of the results, where attributes are:
(i) TP: number of correctly composed APIs, (ii) FP: number of APIs that were
composed but which should not be composed, (iii) FN: number of APIs that
were not composed but that had to be composed, (iv) TN: number of APIs that
were not to be composed and were not composed. The accuracy of the system is

Fig. 6. List of the possible compositions.

(TP+TN)/Total = 0.99. Going into detail, the combinations that led to compo-
sition failures are mainly three: weak support to manage concepts connected by
the owl:subProperty relation, incomplete relationships between ontologies (e.g.,
DBpedia and KBpedia), and inaccurate semantic annotations of parameters re-
turned by table interpretation techniques. A discussion on the quality of results
of table interpretation techniques is out of scope of this paper, however interested
readers can refer to [17] for details.

Table 3. Confusion matrix.

Tot. = 380 Composed Not - Composed
Composed TP = 17 FP = 0

Not - Composed FN = 3 TN = 360

7 Conclusions and future work

The work presented in this paper aims to propose an extension of the OpenAPI
specification to support the semantic annotations of services descriptions and
the automatic composition of services. The goal is to support users without spe-
cific skills to manage semantics annotations, thus encouraging the delivery of
semantically annotated descriptions. For this reason, two solutions have been
proposed. For the annotation of input parameters, the use of Natural Language
Processing (NLP) techniques has been proposed, while for the annotation of out-
put properties, a reviewed Table Interpretation approach has been developed.
The validation of the proposal through a subset of real APIs has underlined how
the use of semantic annotations and the definition of a set of composition rules
lead to an effective support to the composition of APIs, even if further develop-
ment is necessary to improve both precision and recall. Future work will go in
that direction to consolidate the AutomAPIC tool, along with fully integration
with the Swagger interface. Moreover, further investigations will be conducted
to verify the quality of the table interpretation outputs, which play an impor-
tant role in our composition approach. In addition, a user-centric evaluation is
planned in order to verify the ability of users to manage this new type of de-
scriptions with semantic annotations. Finally, to enhance the automation of the
entire process, we will study how to capture and model the user requirements.

References

1. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description
language (wsdl) version 2.0 part 1: Core language. W3C recommendation 26, 19
(2007)

2. Chowdhury, G.G.: Natural language processing. Annual review of information sci-
ence and technology 37(1), 51–89 (2003)

3. Cremaschi, M., De Paoli, F.: Toward automatic semantic api descriptions to sup-
port services composition. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.)
Service-Oriented and Cloud Computing. pp. 159–167. Springer International Pub-
lishing, Cham (2017)

4. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag, Berlin, Heidelberg
(2007)

5. Gomadam, K., Ranabahu, A., Sheth, A.: Sa-rest: semantic annotation of web re-
sources. W3C Member Submission 5, 52 (2010)

6. Kopeckỳ, J., Vitvar, T., Fensel, D., Gomadam, K.: hrests & microwsmo. STI In-
ternational, Tech. Rep. (2009)

7. Lausen, H., Farrell, J.: Semantic annotations for wsdl and xml schema. W3C rec-
ommendation, W3C 69 (2007)

8. Lucky, M.N., Cremaschi, M., Lodigiani, B., Menolascina, A., De Paoli, F.: Enrich-
ing api descriptions by adding api profiles through semantic annotation. In: Proc.
of the 14th ICSOC 2016. pp. 780–794. LNCS Springer (2016)

9. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
stanford corenlp natural language processing toolkit. In: Proceedings of 52nd An-
nual Meeting of the Association for ComputationalLinguistics: System Demonstra-
tions. pp. 55–60. Association for Computational Linguistics (2014)

10. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al.: Owl-s: Semantic markup
for web services. W3C member submission 22, 2007–04 (2004)

11. Paulraj, D., Swamynathan, S., Madhaiyan, M.: Process model-based atomic service
discovery and composition of composite semantic web services using web ontology
language for services (owl-s). Enterprise Information Systems 6(4), 445–471 (2012)

12. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A. (eds.) Semantic Web Services and Web Process Composition.
pp. 43–54. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

13. Roman, D., Kopeck, J., Vitvar, T., Domingue, J., Fensel, D.: Wsmo-lite and hrests:
Lightweight semantic annotations for web services and restful apis. Web Semantics:
Science, Services and Agents on the World Wide Web 31, 39 – 58 (2015)

14. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services
composition: A decades overview. Information Sciences 280, 218 – 238 (2014)

15. Tsouroplis, R., Petychakis, M., Alvertis, I., Biliri, E., Lampathaki, F., Askounis,
D.: Community-based api builder to manage apis and their connections with cloud-
based services. In: CAiSE Forum (2015)

16. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River,
NJ, USA (2005)

17. Zhang, Z.: Effective and efficient semantic table interpretation using tableminer+.
Semantic Web 8(6), 921–957 (2017)

