< DEGLI STUDI
= -
E m—
- =
= =
— o

]
-
(=]
-
-
==

UNIVERSITA’ DEGLI STUDI DI MILANO - BICOCCA

Enriching API Descriptions by Adding API Profiles

Through Semantic Annotation
Lucky M.N., Cremaschi M., Lodigiani B., Menolascina A., De Paoli F.

Lucky M.N., Cremaschi M., Lodigiani B., Menolascina A., De Paoli F. (2016) Enriching API
Descriptions by Adding API Profiles Through Semantic Annotation. In: Sheng Q., Stroulia E.,
Tata S., Bhiri S. (eds) Service-Oriented Computing. ICSOC 2016. Lecture Notes in Computer
Science, vol 9936. Springer, Cham

The final publication is available via https://doi.org/10.1007/978-3-319-46295-0_55

Enriching API Descriptions by adding API
Profiles through Semantic Annotation

Meherun Nesa Lucky, Marco Cremaschi, Barbara Lodigiani, Antonio
Menolascina and Flavio De Paoli

University of Milan - Bicocca, Viale Sarca 336, Milan, Italy
meherun.lucky,cremaschi,depaoli@disco.unimib.it,
b.lodigiani,a.menolascina@campus.unimib.it

Abstract. In recent years several description tools and formats have
been introduced for describing REST Web APIs both in human and ma-
chine readable formats. Although these descriptions provide functional
information about the APIs (e.g. HTTP methods, URIs, model schema,
etc.), the information that qualifies the properties of APIs (e.g. classi-
fication of input arguments and response data) is missing. We envisage
that providing a complete set of information to the users will facilitate
the composition of APIs to fulfil users’ specific needs.

This paper analyses the current state of the art in Web API Descriptions
and Semantic Annotations to show that although there are solutions
with semantic capabilities, most of them fails to add semantic annota-
tions automatically or semi-automatically. Moreover, advanced technical
skills are needed to manage semantics and compose different Web APIs,
which reduce the number of potential users of such solutions. The goal is
to enhance actual API descriptions by creating a simple description for-
mat to annotate properties at semantic level to support semi-automatic
composition. To achieve this goal, we propose an extension of the Open
API Initiative (OAI) specification to create comprehensive descriptions.
The approach focuses on the emerging concept of API Profiling to add
descriptive information of data semantics by addressing Dublin Core Ap-
plication Profile (DCAP) guidelines.

1 Introduction

As web-enabled software becomes the standard for business processes, the ways
organisations, partners and customers interface with it have become a critical
differentiator on the market. Therefore, the ability to provide appropriate and
complete Web API descriptions to let users discover applications that satisfy a set
of requirements and compose applications to fulfil more complex users’ needs is
critical for the success of any organisation. Although the process of implementing
APIs has become common practice, meta-level API definition and implementa-
tion have yet to be settled to set widely-accepted standards. Today, description
formats, such as Open API Initiative (OAI) specification®, also known as Swag-

! http://openapis.org/specification

ger?, RAML, API Blueprint®, are available to describe implementation details
including resources, access points, status codes and input arguments [7]. These
description formats are created by following the API-first approach* and us-
ing a meta-language based on XML, JSON or YAML. Moreover, a set of tools
have been developed to create API descriptions interactively: such tools can
auto-generate server-side code, testing options for different HTTP methods, or
even fully functional API Clients (e.g. Swagger Codegen®). These formats and
tools are mostly human-driven and lack supports for detailed information that
qualifies the properties of an API (e.g. classification of input arguments and re-
sponse data). Moreover, these formats may meet the requirements of developers
to complete simple tasks, but they are inefficient in advanced API discovery or
APT composition due to the lack of machine processable semantics [19]. More-
over, such formats should be made easy to understand when the target users
include high-level business experts or specific groups of people (e.g. the elderly,
people with disabilities, etc.) who do not have specific programming expertise.
We name these users as “end-user developers”. Several studies [1,8] show the
need of interactive documentation that provides flexible navigation alternatives
with a comprehensive set of information to support a wide range of users. As
users background influences how they navigate the documentation, there are
barriers for end-user developers, due to inconsistent and very technical terminol-
ogy use. The final goal of our work is to develop descriptions that can be (semi)
automatically composed by developers to support end-user composition of APIs,
therefore we address the following questions:

— Are there widely adopted approaches, tools or standards for creating machine
processable API descriptions with semantics?

— What are the missing features in current API Description formats to aid
composition?

— How can existing approaches be improved by adding semantics to API De-
scriptions to facilitate (semi) automatic user-driven composition?

In this work, we consider the composition of REST Web APIs by adding ma-
chine readable semantic descriptions. The approach is to describe properties with
semantic meaning by linking to concepts in shared vocabularies.

In the real world, if developers want to compose APIs, they may search di-
rectories such as Programmable Web®, and understand the meaning of involved
data, e.g. that address means city and street, or latitude and longitude, but a
machine agent is unable to understand the meaning without a shared represen-
tation of property semantics. The use of links to concepts in shared vocabularies
that allow a machine agent to compare and compose the actual data can address
this issue. We propose to exploit API profiles to provide descriptive information

2 https://www.swagger.io

3 http://raml.org/, https://apiblueprint.org/
4 http://www.api-first.com/

® http://swagger.io/swagger-codegen/

5 http://www.programmableweb.com

about the contents of the response according to the Application Profile” ap-
proach described as a set of metadata elements, policies, and guidelines defined
for a particular application.

In this paper we evaluate the current approaches to create API descriptions
and make a proposal to include additional qualifying information. Our goal is
to enhance interoperability and composition by creating a standard description
format that correlate properties at semantic level. To achieve this goal, we pro-
pose to include API profiles with the API descriptions created by following the
OALI specification.

We adopt the Dublin Core Application Profile (DCAP) guidelines®, to share
data semantics in a specific representation format. We propose the use of a
(semi) automatic method for adding annotation, TableMiner [24], which is a
semantic table interpretation method to extract the most appropriate concepts
from shared vocabularies in a (semi) automatic way by using context informa-
tion. We will explain this technique elaborately in Section 2.

We conceived our approach to use existing vocabularies (about 558) indexed
in the Linked Open Vocabularies search engine’. The statistics presented in [10]
and [18] shows that the most used vocabularies are not domain dependent and
as such they may cover different topical categories such as media, government,
publications, life sciences, geographic, cross-domain, user-generated content, and
social networking. However, the above vocabularies may not provide all needed
terms thus, we can rely on additional domain specific vocabularies to get a
practical solution covering a large set of areas. They will be integrated with
existing vocabularies to ensure practicability.

The rest of the paper is organized as follows, Section 2 discusses the state
of the art and motivation, Section 3 and 4 discusses our proposal, Section 5
describes how the system works and Section 6 drives some conclusions.

2 State of the Art and Motivation

Although there are many approaches proposed to enrich Semantic Web, each
one claiming to be better than the others, strict methodologies to compare the
existing description techniques and scientific evidences are missing [20]. In one
hand, there are many works that have been proposed in Semantic Web Ser-
vice community with concrete implementation, on the other hand they lack in
facilitating automation in reality due to: (i) the manual work required to cre-
ate descriptions and, (ii) the lack of standard that limits interoperability. To
analyse the current state of the art aiming to facilitate user-driven API com-
position, we discuss existing approaches that facilitate the use of Web APIs by
machine agents. We also analyse the existing approaches and tools considering
API Descriptions, Semantic Correlation and Composition.

" http://dublincore.org/documents/2001/04/12/usageguide/glossary.shtml
8 http://dublincore.zsaorg/documents/profile-guidelines/
9 http://lov.okfn.org/dataset /lov/

To accelerate the use of Web APIs by machine agents, Semantic-Web re-
searchers proposed a number of solutions. Paper [20] emphasises on the need to
provide self-descriptive descriptions that include metadata, that can be inter-
preted by machine agents in a bottom up way (i.e. information structure should
be in pieces to whole). Paper [9] proposes a set of best practices to build self-
descriptive RESTful services accessible by both humans and machines. Moreover,
it defines a framework that extracts compliant descriptions from documents pub-
lished on the Web, and makes them available to clients as resources. Paper [5]
develops Hydra, a small vocabulary to describe Web APIs; this approach aims
to introduce a new breed of interoperable Web APIs by breaking the descrip-
tions down into small independent fragments. Paper [6] focuses on facilitating
composition process by reasoning with tailored ontologies that capture user pref-
erences.

To analyse current approaches regarding Descriptions, our discussion includes
WSDL, WADL, hREST, RDFa, MicroWSMO, SA-REST, MSM, RESTdesc,
SEREDAS;j following the discussions in [4,12,19,22]. Also metadata formats
like Swagger, RAML, Hydra and API Blueprint have been discussed following
papers [5,17]. WADL is specifically used for syntactic descriptions of RESTful
services, instead of WSDL, which is used to describe Web Services in general.
Both of them, however, do not support simple links and they appear to be too
heavy to describe Web APIs. hREST and SA-REST are more approachable as
they use microformats which are embedded in the Web page of the API doc-
umentations. Although these two approaches are more useful for the semantic
correlation, they are not focusing enough on the description itself. RDFa follows
the same consideration made for hREST and SA-REST about the specialisation
in doing semantic-annotation, turning out to be even more complex to use [19].

For the purpose of this paper we place great emphasis on the analysis of
previously listed approaches specific to Web APIs. MicroWSMO relies on hREST
offering service property descriptors, but it also focuses on the semantic part
of the descriptions. RESTdesc is a logic-based Web API description method
that captures the functionality of Web APIs, describing an HTTP request and
its preconditions and postconditions expressed in Notation3 (N3), which is a
serialization form for the main Semantic Web language, RDF [22]. However,
RESTDesc requires manual effort to produce the desired specifications [19] and
also there are some complex use cases that cannot be covered, such as cases
in smart environments where RDF or N3 are not providing proper solutions.
SEREDAS;j provides a way to describe Web APIs with JSON-based method
that is simpler to apply. However, it produces two different documents in order
to provide a complete descriptions, proving to be difficult to maintain.

Although there exist API repositories like Programmable Web where users
can search for APIs, well-structured API documentations enabling effective dis-
covery are missing. Several frameworks have been introduced to create descrip-
tions for REST APIs through user-friendly and easy-to-use description format
editors [7]. Some REST metadata formats have been created to document REST
APIs in a consistent way. These standards offer a way to represent an API by

specifying entry point(s), resource paths, methods to access these resources, pa-
rameters to be supplied with these methods, formats of inbound/outbound rep-
resentations, status codes, error messages and documentary information. Some
of the most popular standards are the following: Swagger or Open API Initia-
tive specification, which offers a large ecosystem of API tooling, has a very large
community of active users and great support in almost every modern program-
ming languages and allows developers to test the APIs immediately through easy
deployment of server instances. API Blueprints, where an API description can
be used in the Apiary'® platform to create automated mock servers, validators
etc. The Hydra specification, which is currently under heavy development, tries
to enrich current web APIs with tools and techniques from the semantic web
area. RAML is a well-structured and modern API modelling language. Swag-
ger is obviously the dominant choice at the moment, though all specifications
are promising [17]. We agree with this statement and choose to use Swagger
instead of other formats because of its above mentioned promising features and
also because it has the capability to provide human-readable API descriptions
by using YAML, as well as JSON. Moreover, it defines a standard in the Web
APT description method, being partner of OAI specification as opposed to other
specifications. We agree upon the objective of Open API Initiative, creating an
open description format for API services that is vendor-neutral, portable and
open to accelerating the vision of a truly connected world. Although API De-
scription created by Swagger editor gives the opportunity to create descriptions
easily, they lack detailed information qualifying the properties of an API (e.g.
classification of input arguments and response data), which is relevant to address
automatic discovery and composition performed by machines. To address these
issues, we want to add additional information to the descriptions.

Extensive research has been conducted with the vision to create automatic in-
tegration of Web Services or APIs [11]. But in practice most of these approaches
are having problems in communicating between candidate Web services or APIs
due to the lack of semantic correlation of properties. To automate the interac-
tions between Web APIs there is a need to describe the exchanged data with
semantics. To achieve this there are two possibilities, one is by directly creating
Web service descriptions following specifications defined in a logic based lan-
guage, like the Web Ontology Language (OWL) and the second one is by linking
existing descriptions to these ontologies (i.e. aligned descriptions to shared do-
main ontologies). As the first approach needs expertise in logic based languages,
its adoption is curtailed. The latter is more approachable because it enriches the
existing descriptions to be remain compliant with other semantic descriptions.
Thus, this approach reduces the possibilities to lock out non-semantic descrip-
tions.

To support automatic composition of Web Services, several approaches have
been proposed focusing on semantic annotations, but many of them are either not
validated or the validation lacks credibility [16]. Moreover, most of the existing
tools are considering Web Services while we are focusing on Web APIs. For the

10 https://apiary.io/

purpose of this paper, we analyse two tools SWEET (Semantic Web sErvices
Editing Tool)!! and Karma!?, which emphasise on user-driven integration of
Web APIs by enabling semantic annotations. SWEET is a tool that allows the
development of mashup based on linked open data and services, by enabling the
creation of semantic descriptions of Web APIs. The input is the HTML Web page
describing a Web API and the result is a semantically annotated HTML page,
or a RDF MicroWSMO description. Although SWEET allows the definition of
semi-automatic annotations, the users have to make long effort because they
need to find all the parameters to be annotated in Web APIs description pages.
Karma [2,15] is another tool which allows users to integrate data from different
data sources, including databases, spreadsheets, XML, JSON and Web APIs.
The inputs to the process are an ontology, a data source and a database of
semantic type that the system has learned to recognise, based on prior use of
the tool. The system is based on a probabilistic model that is also capable of
learning, with a model named conditional random field (CRF) [3], whenever
users define a new mapping from data source in the ontology.

Both of these tools guide users in the process of composition of Web APIs and
endeavour to suggest the correct annotations, based on the use of ontologies. The
main difference between SWEET and Karma is that SWEET allows the addition
of hREST tags in the HTML page, since it uses only HTML pages as inputs.
Karma, instead, employs a table annotation technique creating a table where,
once properties are input into the header row, API responses are populated
in the columns. These properties are collected dynamically through different
invocations of an API, by defining several different parameters to retrieve the
most accurate representation. However, this tool does not consider the context
outside tables. We therefore propose to use a different technique: TableMiner [24].
TableMiner is an innovative approach to classify table columns and disambiguate
cell contents following different algorithms. This approach considers two types of
contexts, one is defined as “in-table context”, including column header, column
content and row content, and another one is “out-table context”, which could
include semantic mark-up already inserted in a web page, the web-page title,
paragraphs and table captions. The usage of this out-table context and the
previously mentioned algorithms are taking TableMiner a step forward in the
State-of-the-Art:

— first, it adopts a boostrapping, incremental approach to interpret columns
with at least 51% of non-empty rows and with mostly named entities;

— then, a forward-learning process uses an incremental inference with a stop-
ping algorithm that makes a first semantic association with the contents of
columns, followed by a process of disambiguation of the contents in the cells
and the searching of the highest scoring entities which could represent the
right concepts;

— at this point, a backward-update step kicks in to make an interpretation of
the remaining data, guided by previously obtained results. This phase could

' http://sweet.kmi.open.ac.uk/index.html
2 http://usc-isi-i2.github.io/karma/

modify the columns classification since there are new disambiguated entity
content cells;

— finally, classifications and disambiguated entities are updated again with a
mutually recursive pattern until they can be considered stabilised.

Another strong point in favour of TableMiner is the usage of predefined incre-
mental inference with stopping algorithm, which does not require to analyse all
the rows of a column, instead it stops when it feels confident, reducing consider-
ably the computation time. Finally, TableMiner is adaptable to any knowledge
bases.

- info:

title: Bike sharing API
. host: api.bikesharing.com
4. produces:

- appilcatloa/jscn
5. pathsi

/bikess
) get:
9. description: |
. The Bikes endpoint returas information about
available bikes at the nearest position.

parameters:
- name: lat

e

P

inro:
title; Weather APl
hest: api.vesther.cem
produces:
. = application/ison
6. paths:
fweather:
a. get:
E tags:
- weather
rosponcacs
200
13. descriptien: An array of geographical area vith
weather indication
J schena:
type: array
items:
§ref: '#/definltions/Gechrea’

N

W

ins query
docoriptions Latituds component of location.
raquired: trus
type: ounber
format: double
= name: lng
im: guery
description: Longitude component of location.
21, required: true
22 typo: susber
format: double

responses
2 200

desoription: An azray of bikes
29. schema:
0. type: arzay
. itams:

$ref: ‘#/defiritionn/Rike’

Fig. 1. The APIs descriptions created following OAI specification

3 API Descriptions

To analyse how we can enrich the existing REST description formats, let’s dis-
cuss OAI descriptions that follow the Swagger format by providing an example
involving end-user developers. Assume that a couple of tourists, John and Mary
just arrived at one of the airports near Milan to visit the city. To move around
they have different alternatives: (i) public transports, or sharing services for
(ii) cars or (iii) bikes. Mary and John want to choose one of them according
to preferences and/or context (e.g. weather, time, location, accessibility, etc.).
Unfortunately, they have to invoke different information services to collect data
before making an informed decision. Moreover, data are often not easily compa-
rable or complete: for example, in the descriptions of bike sharing and weather
APIs (Fig. 1) spatial references are in different formats and with different mean-
ing (e.g., longitude/latitude versus area by points). Furthermore, most of the

APIT descriptions are available only as HTML web pages, yet this is not ade-
quate to support (semi) automatic comparison and composition of properties.
We propose to extend OAI descriptions by mapping properties using DCAP to
deliver API profiles, and defining a method for automatic extraction of concepts
from shared vocabularies.

As for REST APIs, we should consider the use of HTTP OPTIONS method!?
to make REST APIs self-descriptive. Currently, the OPTIONS method is ba-
sically used to retrieve simple information about a resource, like the available
HTTP methods that can be used in the communication with the specific API,;
however, since there is no standard response to an OPTIONS request, a full
description could be returned in the response-body. With our approach API de-
scriptions can be edited using the tool we developed, as explained in Section 5,
and retrieved by invoking OPTIONS method. Other approaches that make the
most of HTTP OPTIONS method are [13, 21].

3.1 API Profiles

As defined in RFC6906'* “a profile is not to alter the semantics of the resource
representation itself, but to allow clients to learn about additional semantics
(constraints, conventions, extensions) that are associated with the resource rep-
resentation, in addition to those defined by the media type and possibly other
mechanisms” [23]. Given this definition it can be stated that API profile docu-
ments can offer a view of what is supplied by an API, and how clients and servers
can expose features in a machine-readable format. The Dublin Core Metadata
Initiative!> (DCMI) released the DCAP format to describe profile metadata
defining the constraints on how the RDF vocabularies are used to create pro-
files by linking properties. DCAP has been developed following the concept of
Metadata Profile!'® that supports additional descriptive information about the
contents of the response (e.g. useful indexing properties of the document, terms
of use, etc.). For example in Fig. 2, line 8 and 12 link spatial data to concepts
of latitude (lat) and longitude (long) from shared vocabularies. The approach
is to enrich existing descriptions (Fig. 1) with such explicit references to shared
vocabularies (Fig. 2) to facilitate automatic composition.

4 Semantic Annotations in API Descriptions

As standard description formats are missing, we propose to add semantic annota-
tions in API descriptions through API profiles by linking properties to concepts
in shared vocabularies. To show how the proposed approach works, let’s go back
to our example: Mary and John may save time and effort if we can provide
all information related to useful services (e.g. public transport in Milan) in an

'3 https://www.w3.org/Protocols/rfc2616 /rfc2616-sec9.html
1 https://www.ietf.org/rfc/rfc6906.txt

!5 http://dublincore.org/

16 https://www.w3.org/TR/html4/struct/global.html

1. Description template: Bike id=bike

2. minimum = 0; maximum = unlimited

3. Statement template: model

4. Property: hittp://dbpedia.org/property/name
5. minimum = 0; maximum = 1

6. Type of Vvalue = “literal”

Statement template: lat

a. Property: http://www.wl.org/2003/01/gec/wgsBd pos#lat
9. minimum = 1l; maximam = 1

10. Type of Value = *float®

11. EStatement template: lng

12. Property: http://www.wl.org/2003/01l/geo/wgsh4 pos#long
13. minimum = 1; maximum = 1

14. Type of Value = *“float®

15. [--1

Fig. 2. An example DCAP profile

aggregated way by composing descriptions. For example, if they can compare
weather forecast information with available mobility services, they can make in-
formed decisions like using bike sharing service in case of a sunny day, or a car
sharing service in case of rain. To improve the descriptions in Fig. 1, we propose
to add API profile information by means of DCAP specifications, as shown in
Fig. 3 that specifies a definition of a bike. The resulting description consists

geo: http://www.w3.orq/2003/01/geo/wgs84_pos#

1. definitions: OAl specification
2 Bike:

3 type: object
4 properties:

5. bike_id:

6 type: number

7 description:

8. type: string

9. lat:

10. type: number

11. property: geo:lat

12. type of value: float

13. 1ng:

14. type: number
15. property: geo:lng
16. type_of_value: float

Fig. 3. Adding API profile using DCAP specification in OAI specification

of a comprehensive set of information that facilitate composition of responses.
For example, in order to identify the best solution for Mary and John, car and
bike sharing API responses can be enriched with contextual information such
as weather forecast, traffic congestion, accessibility for disabled or elders, etc.
In Fig. 4, the position of a bike is uniquely identified by concepts geo:lat and
geo:lng. Similarly, information about the weather have been linked to concept
schema.org/geo. In this way, it is possible to compare the responses of the two
APIs and find the weather conditions in the area in which the bike is located.
Similarly, when the visitors want to use a car, they need to know if a parking

place is available near their destination. They may use Google Places API by
giving the value parking in the types filter for parking place searches. This API
provides responses with the address property that shows geocoding results with
a precise position. By correlating the semantics of properties of Weather API,
schema.org/geo, and Google Places API, schema.org/address, the visitors can
get required information to take a decision such as whether to book a open or
closed parking place.

; éﬁ;é:].nitions: Bike sharing API

3. Bike: 1. [..

4. type: object 2. c[lef:!mitions: Weather API
5. [--] 3. Weather:

6. lat: 4. type: object

7. type: number 5. properties:

8. property: geo:lat 6. [.-]

9. type_of_value: float 1. area:

10. 1ng: 8. type: number

11. type: number 9. property: https://schema.org/geo
12. property: geo:lng 10. type_of value: GeoShape

13. type_of_value: float

Fig. 4. Mapping of properties between responses of Bike sharing and Weather APIs

From the discussion in Section 2, we find an issue that developers often
have to manually define the mappings between the information consumed and
produced by Web APIs to shared vocabularies. In the following section we define
the architecture of the tool that can address the discussed issues.

5 The architecture - How the system works

We have developed a system that target both professional developers, who have
technical expertise in developing applications, and end-user developers that may
not be familiar with the technologies discussed in the previous sections. There-
fore, the aim is to create an abstraction layer to hide the technological complexity
to the end-users and make the task of composing descriptions and services eas-
ier. The resulting system makes available a composition process through a REST
API, which is provided by the API Provider component (Fig. 5).

The system architecture (Fig. 5) consists of three layers: Presentation layer,
Business logic layer and Data layer. Both Presentation and Business Logic lay-
ers consist of components dedicated to different group of users: Professional
Developers and End-User Developers.

The presentation layer dedicated to professional developers includes compo-
nents that provide a user-friendly interface to enrich the descriptions of Web
APIs, and manage semantic annotations. These tasks have been accomplished
by extending the Swagger Editor, both for descriptions and annotations. In par-
ticular, the description process is semi-automatically managed by augmenting

2 d

Professional Developer End-User Developer
API REPOSITORY
ANNOTATION COMPOSITION Presentation
g DESCRIPTION EDITOR EDITOR SEARCH EDITOR layer
b ; ‘
Business Logic
AP CONNECTOR APl ANALYSER TRANSFORMER layer
ONTOLOGY
e e API COMPOSER API PROVIDER
Data
DATA AND BUSINESS INTEGRATION layer

LINKED OPEN DATA CLOUD

Fig. 5. The system architecture

existing API descriptions, which can be retrieved from existing repositories (e.g.
ProgrammableWeb), services registry, or by exploiting the HTTP OPTIONS
method, as discussed in Section 3. Note that the OPTIONS method is also ex-
ploited by the system to support maintenance and evolution of descriptions al-
ready known by the system. If it is not possible to retrieve any initial description,
the developer can insert a new API description manually using the Description
Editor. These descriptions are represented in JSON or YAML format. For each
resource, all relevant information such as available HTTP operations (e.g. GET,
POST, PUT, DELETE, OPTIONS, HEAD, PATCH), the list of parameters
for each operation, possible responses are collected. The process of creating a
description is detailed in Algorithm 1.

Algorithm 1: Retrieve or create API description
Result: API description

1 if description is available then

2 retrieve description from existing repositories, services registries or via
OPTIONS method;

3 else

4 L create it manually using the Description Editor;

The Business Logic Layer allows developers to semi-automatically add se-
mantic annotations to inputs and outputs by following the approach discussed
in [24, 25]. The system automatically builds a table by putting properties in the
header row, and filling up columns with API responses. These responses are
collected dynamically by the API Connector component through multiple invo-
cations of the involved APIs. The use of different input values allows the building
of an accurate description of the APIs. In case of failure, the developer is asked
to provide valid inputs to proceed. For the Bike sharing API example presented
in Section 3, and Section 4, the header rows include input (e.g., “id_station”)
and output (e.g., “station name”, “lat”, “long”, “free bikes”, “total slots”) prop-
erties, and the cell contents will be incrementally filled with data of each API
invocation. So, the system is able to break up the response code (e.g. JSON,
XML) in order to identify the output properties and their values.

Algorithm 2: Create and add API profiles to API descriptions

Data: API description
Result: API description with API profile

=

Detect all resources’ end-point;
foreach end-point do
// collect data
repeat
generate input parameters following the API description;
if input parameters cannot be generated then
L take input parameters from the user

N

invoke API with input parameters;
collect results;
until at least N results are collected; /* default N=10 */
// create tables
10 foreach results do
11 L create a header row with API properties;

© W O U W

12 fill content-cells with values from inputs and responses;

// add semantic annotations
13 foreach tables do
14 apply TableMiner technique;

15 show table to the user;

16 if table annotation is not complete then

17 show related vocabularies and/or alternatives to the user;
18 L ask the user to manually add links;

19 if the user wants to review the annotations then

20 show related vocabularies to the user;

21 L let the user confirm or modify the links;

22 insert API profile in API description;

In the Mary and John example, lat, Ing and area are in the header row;
values like “45.523”, “9.219” and “[[45.524902, 9.216672],[45.526398, 9.218571],
...]”, which is an array of spatial points, fill up the column cells.

Algorithm 2 defines the process, which extends the one proposed by Karma
[14] with the use of TableMiner technique to analyse the semantic properties
of the resulting table. The TableMiner annotation technique is applied by the
API Analyzer component that follows the steps described in Section 2 to set
the meaning of properties by automatically linking them to concepts in the
shared vocabularies. However, if the semi-automatic process fails, the developer
is able to provide semantic annotation manually using the editor. Moreover, the
system can support the developers by showing shared domain vocabularies and
annotation alternatives.

Finally, the Data and Business Integration component stores the data to
support the analysis of the APIs, and the produced descriptions and semantic

annotations, to support the creation of an ecosystem of services. This ecosys-
tem is an open set of services that could be automatically retrieved and linked
each others to be able to follow the evolving user needs. The descriptions are
retrievable by the OPTIONS method, as already discussed, to support use and
evolution. In the context of this paper, we consider Mary and John as infor-
mation seekers who want to know some information to facilitate their mobility.
They are representative of generic users who wants to know more information
about specific services (e.g., mobility) and related services. They are provided
with descriptions to select and compose APIs according to patterns that have
been pre-defined by professional developers.

The Composition Editor component is devoted to create compositions of ser-
vices. The first step is to search for Web APIs that are already stored in the
system by using the Search component. All relevant results and their possible
combinations are loaded and showed in the interface to let the user select the
APIs that match a set of given requirements. The second step is to create com-
positions either by directly linking the outputs and inputs of selected APIs, or by
including transformation services that transform and make outputs compatible
to inputs according to the semantic relations hold in the annotations. The Trans-
former component has the task of managing the set of transformation rules that
make properties compatible. Composition patterns are then stored and provided
to users such as Mary and John that have the task to populate such patterns
with the services of interests.

The Mary and John example can provide a general understanding of how
these transformation rules work: after lat becomes geo:lat, and Ing becomes
geo:lng to build the augmented description (shown in Fig. 4), it is possible to
identify which area includes the given pair of geo:lat and geo:lng values by apply-
ing the transformation rules. In such a way, it is possible to identify the weather
conditions in the area in which a bike station is currently located. If the sys-
tem cannot identify the appropriate rules to manage some annotated properties,
the developer can insert new ones to enrich the system and ensure its evolu-
tion. In other words, the system provides end-users with synthetic information
to accomplish a given task, anyway, if they are interested to see more details
they can explore the process of transformation and composition. Moreover, if
the user has the needed skills, he or she can contribute to the system evolution
by adding transformation rules and/or composition patterns. One of the major
advantage of the proposed system remains the separation of the annotation ac-
tivities, which requires skills on semantic technologies, from the transformation
and composition activities, which requires basic programming skills, or even no
particular skills to just use the system as it is, like in the case of Mary and John.

6 Conclusion

Today, Web APIs are associated with textual descriptions that are not under-
standable by machines and cannot be composed (semi) automatically. There ex-
ist approaches, including WADL, WSMO Lite, Resource-Oriented Service Model

(ROSM) and RESTdesc, that provide rich semantic descriptions, but they are
not widely adopted because of the required expertise in Semantic Web Languages
(e.g. RDF, SPARQL, N3) as well as in-depth domain knowledge [19]. Although
machine-readable descriptions (e.g. MicroWSMO, Minimal Service Model, SA-
REST) have been introduced to support additional semantic information, tools
for creating automatic or semi-automatic semantic annotations are missing. Such
shortcomings motivate our work and our long term goal of defining an abstract
layer on top of API descriptions and profiles to hide the intrinsic complexity to
the end-users.

The current contribution is an extension to Open API Initiative (OAI) Speci-
fication following the Dublin Core Application Profile (DCAP) guidelines. Target
users are technology experts and professional developers that can understand the
involved concepts and drive the semi-automatic tool we developed. The next step
is to introduce high-level concepts that target specific requirements (e.g. com-
mon needs and requirements of specific groups of users), and are understandable
by generic users. Such concepts will be implemented in visual interfaces that can
support actual user evaluation tests.

References

1. Danielsen, P.J., Jeffrey, A.: Validation and interactivity of web api documentation.
In: Web Services (ICWS), 2013 IEEE 20th International Conference on. pp. 523—
530. IEEE (2013)

2. Gupta, S., Szekely, P., Knoblock, C.A., Goel, A., Taheriyan, M., Muslea, M.:
Karma: A system for mapping structured sources into the semantic web. In: Ex-
tended Semantic Web Conference. pp. 430-434. Springer (2012)

3. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data pp. 282-289 (2001)

4. Lanthaler, M., Giitl, C.: A semantic description language for restful data services to
combat semaphobia. In: Digital Ecosystems and Technologies Conference (DEST),
2011 Proceedings of the 5th IEEE International Conference on Digital Ecosystems
and Technologies. pp. 47-53. IEEE (2011)

5. Lanthaler, M., Giitl, C.: Hydra: A vocabulary for hypermedia-driven web apis.
LDOW 996 (2013)

6. Mayer, S., Inhelder, N., Verborgh, R., Van de Walle, R., Mattern, F.: Configura-
tion of smart environments made simple: Combining visual modeling with semantic
metadata and reasoning. In: Internet of Things (IOT), 2014 International Confer-
ence on the Internet of Things. pp. 61-66. IEEE (2014)

7. Mitra, R.: Rapido: A sketching tool for web api designers. In: Proceedings of the
24th International Conference on World Wide Web Companion. pp. 1509-1514.
International World Wide Web Conferences Steering Committee (2015)

8. Myers, B.A., Jeong, S.Y., Xie, Y., Beaton, J., Stylos, J., Ehret, R., Karstens, J.,
Efeoglu, A., Busse, D.K.: Studying the documentation of an API for enterprise
Service-Oriented Architecture. IGI Global (2012)

9. Panziera, L., De Paoli, F.: A framework for self-descriptive restful services. In:
Proceedings of the 22nd international conference on World Wide Web companion.
pp- 1407-1414. International World Wide Web Conferences Steering Committee
(2013)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: International Semantic Web Conference.
pp. 245-260. Springer (2014)

Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services
composition: A decades overview. Information Sciences 280, 218-238 (2014)
Sheth, A.P., Gomadam, K., Lathem, J.: Sa-rest: Semantically interoperable and
easier-to-use services and mashups. IEEE Internet Computing 11(6), 91 (2007)
Steiner, T., Algermissen, J.: Fulfilling the hypermedia constraint via http options,
the http vocabulary in rdf, and link headers. In: Proceedings of the second inter-
national workshop on RESTful design. pp. 11-14. ACM (2011)

Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Rapidly integrating ser-
vices into the linked data cloud. In: The Semantic Web—ISWC 2012, pp. 559-574.
Springer (2012)

Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Semi-automatically mod-
eling web apis to create linked apis. In: Proceedings of the ESWC 2012 Workshop
on Linked APIs (2012)

Tosi, D., Morasca, S.: Supporting the semi-automatic semantic annotation of web
services: A systematic literature review. Information and Software Technology 61,
16-32 (2015)

Tsouroplis, R., Petychakis, M., Alvertis, 1., Biliri, E., Lampathaki, F., Askounis,
D.: Community-based api builder to manage apis and their connections with cloud-
based services. In: CAiSE Forum (2015)

Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalén, M., Vatant, B.: Linked
open vocabularies (lov): a gateway to reusable semantic vocabularies on the web.
Semantic Web (Preprint), 1-16 (2015)

Verborgh, R., Harth, A., Maleshkova, M., Stadtmiiller, S., Steiner, T., Taheriyan,
M., Van de Walle, R.: Survey of semantic description of rest apis. In: REST: Ad-
vanced Research Topics and Practical Applications, pp. 69-89. Springer (2014)
Verborgh, R., Mannnens, E., Van de Walle, R.: Bottom-up web apis with self-
descriptive responses. In: Proceedings of the First Karlsruhe Service Summit
Workshop-Advances in Service Research. p. 143. KIT Scientific Publishing (2015)
Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., Vallés,
J.G.: Description and interaction of restful services for automatic discovery and
execution. In: 2011 FTRA International workshop on Advanced Future Multimedia
Services (AFMS 2011). FTRA (2011)

Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., Vallés,
J.G.: Capturing the functionality of web services with functional descriptions. Mul-
timedia tools and applications 64(2), 365-387 (2013)

Wilde, E.: The ”profile” link relation type. https://www.ietf.org/rfc/rfc6906.txt,
accessed: 2016-05-24

Zhang, Z.: Start small, build complete: Effective and efficient semantic table inter-
pretation using tableminer. Under transparent review: The Semantic Web Journal
(2014)

Zhang, Z.: Towards efficient and effective semantic table interpretation. In: The
Semantic Web-ISWC 2014, pp. 487-502. Springer (2014)

